Methods of Applied Math I

Solve ALL 6 problems. Notes, books or calculators are NOT allowed.
Be detailed in your answer.

1. (20 points) Show that the system

$$
\dot{x}=-y+x\left(1-2 x^{2}-3 y^{2}\right), \quad \dot{y}=x+y\left(1-2 x^{2}-3 y^{2}\right)
$$

has at least one closed path in the phase plane.
2. (15 points) Consider the nonlinear dynamical system

$$
\dot{x}=x\left(1-\frac{x}{2}-y\right), \quad \dot{y}=y\left(x-1-\frac{y}{2}\right)
$$

i) Find all fixed points.
ii) Determine whether each fixed point is linearly stable or not and draw its local phase portrait.
3. (15 points) Consider the ODE (here, $0<\varepsilon \ll 1$)

$$
\frac{d^{2} y}{d t^{2}}+\omega_{0}^{2} y=\varepsilon\left[\frac{d y}{d t}+\left(\frac{d y}{d t}\right)^{2}\right]
$$

Define $t_{0}=t, \quad t_{1}=\varepsilon t$ and let $y=y_{0}\left(t_{0}, t_{1}\right)+\varepsilon y_{1}\left(t_{0}, t_{1}\right)+\cdots$.
(a) Write down the $O(1)$ and $O(\varepsilon)$ equations for y_{0} and y_{1}.
(b) Solve the $O(1)$ equation.
(c) Identify the secular term(s) and write down the condition(s) to guarantee their removal.
4. (15 points) Consider the dynamical system

$$
\dot{x}=\left(r-x^{2}\right)\left(r-2+x^{2}\right),
$$

where r is a real parameter. Find all the fixed point(s). Discuss the linear stability analysis of these fixed point(s) and explain their dependence on r. How many bifurcation point(s) are there?
5. (20 points) Consider the boundary value problem

$$
\varepsilon^{2} \frac{d^{2} u}{d x^{2}}+(2 x+1) \frac{d u}{d x}+2 u=0, \quad u(0)=1, \quad u(1)=2
$$

where $0<\varepsilon \ll 1$. Find one term of the inner and outer expansions and match them.
6. (15 points) (i) Find three term expansion in terms of $0<\varepsilon \ll 1$ for

$$
x^{2}-2 \varepsilon x-\varepsilon=0
$$

(ii) Find two term approximation to the real roots of the equation

$$
\varepsilon x^{3}=x+1
$$

